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Abstract. We examine the validity of the recently proposed semi-Poisson level spacing distribution function
P (S), which characterizes “critical quantum chaos”, in 2D disordered systems with spin-orbit coupling. At
the Anderson transition we show that the semi-Poisson P (S) can describe closely the critical distribution
obtained with averaged boundary conditions, over Dirichlet in one direction with periodic in the other and
Dirichlet in both directions. We also obtain a sub-Poisson linear number variance Σ2(E) ≈ χ0 +χE, with
asymptotic value χ ≈ 0.07. The obtained critical statistics, intermediate between Wigner and Poisson, is
discussed for disordered systems and chaotic models.

PACS. 05.45.Mt Semiclassical chaos (“quantum chaos”) – 71.30.+h Metal-insulator transitions and other
electronic transitions – 72.15.Rn Localization effects (Anderson or weak localization)

In mesoscopic physics the effect of disorder on the elec-
tron propagation leads to the zero-temperature quantum
Anderson metal-insulator transition, which arises from
the competition between quantum tunelling and inter-
ference as a function of disorder. For weak disorder the
electrons diffuse, due to quantum tunelling, and the sys-
tem is metallic with correlated chaotic energy levels and
“level-repulsion” described by Wigner statistics [1–3]. In
the case of strong disorder the electrons localize in random
positions, due to quantum interference, and the system
becomes insulating, having non-chaotic completely uncor-
related (random) energy levels which show “level attrac-
tion” and obey ordinary Poisson statistics. In order to see
the metal-insulator transition high enough space dimen-
sionality (usually greater than 2) is required and at the
critical point, which corresponds to an intermediate value
of disorder, the level statistics changes from Wigner to
Poisson [1,2]. The critical electrons are neither extended
nor localized and it is believed that a new universal crit-
ical statistics, intermediate between Wigner and Poisson,
should apply [4,5]. We aim to address the question of the
critical statistics in two dimensions (2D), where a metal-
insulator transition occurs in the presence of spin-orbit
coupling [6].

The stationary energy levels of electrons in 2D quan-
tum billiards (e.g. in the form of the stadium), with zero
potential inside and infinity outside, can also display quan-
tum chaotic behavior [7]. The analogies in the level sta-
tistical description bring together the two fields of meso-
scopic physics and quantum chaos and have been exploited
in the past for understanding important phenomena in
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both areas. In this respect, Wigner statistics was originally
conjectured to apply for quantum systems with chaotic
classical dynamics, since the levels resemble the eigenval-
ues found in appropriate random matrix ensembles, intro-
duced long ago [7,8]. On the other hand, integrable sys-
tems correspond to Poisson statistics having completely
uncorrelated (random) eigenvalues. The key question is
again what happens at criticality, between chaos and in-
tegrability, similarly to the transition between metal and
insulator. Recently, a new distribution was proposed to
describe critical levels statistics [9,10], which contains
both Wigner and Poisson features, as the main theme of
what is called “critical quantum chaos”. This intermedi-
ate distribution can be derived from a short range plasma
model [9] and was realized in pseudo-integrable systems,
such as the classically non-integrable but of zero metric
entropy rational triangle billiards [9,11], and corresponds
to other solvable models [12,13]. In disordered systems the
intermediate distribution, named semi-Poisson, was shown
to characterize critical states at the 3D metal-insulator
transition [10] and the energy levels of few electrons in
the presence of disorder and interactions [14].

In Figure 1 the energy levels E obtained from a 2D
disordered system with spin-orbit coupling are displayed
as a function of disorder W . The behavior of the lev-
els is seen clearly to change at the critical point of the
metal-insulator transitionWc, which separates chaotic lev-
els (on the left) from non-chaotic levels (on the right).
The chaotic levels are more regular (correlated) than the
non-chaotic levels, which are uncorrelated (random). The
“level-repulsion” effect can be seen on the chaotic levels
and the “level-attraction” on the non-chaotic levels, where
degeneracies exist. The displayed levels in Figure 1 are
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Fig. 1. Energy levels E versus disorder W , for a 2D disordered
system with spin-orbit coupling. The metal-insulator critical
point Wc = 8.55, marked with a broken line, separates chaotic
levels (on the left) with “level-repulsion” and “spectral rigid-
ity” described by Wigner statistics, from non-chaotic levels (on
the right) with “level attraction” and “spectral randomness”
described by Poisson statistics. In this paper we address what
happens at the metal-insulator transition (broken line).

obtained for one random configuration from a system of
linear size L = 30, by keeping all the energies at the middle
of the spectrum, making the density of states constant at
every W . The overall “spectral rigidity”, seen in metallic
chaotic levels, can be contrasted with the “spectral ran-
domness” of insulating non-chaotic levels. The surprising
result, also visualized in this figure, is that the chaotic
levels appear more “regular” than the non-chaotic ones.

The question addressed in this paper is: “what is the
level statistics at the critical broken line of Figure 1?”
This study is done in connection to the scenario of “crit-
ical quantum chaos”, which is summarized in a semi-
Poisson level spacing distribution function P (S) and a
sub-Poisson linear number variance Σ2(E), which mea-
sures level-fluctuations in a given energy window E. More-
over, in order to examine the validity of the semi-Poisson
P (S) different boundary conditions (BC) must be consid-
ered, in the spirit of recent important findings [10]. The
fact that the critical level fluctuations are at the same
time scale-invariant (size-independent) and dependent on
BC was explained by invoking the concept of the critical
conductance [10]. The influence of boundary conditions
on the critical level statistics has also been demonstrated
for a different critical 2D model [15], without affecting the
critical value of the disorder.

The main features of “critical quantum chaos” for sys-
tems characterized by the universality index β = 1, 2, 4
are summarized in: (i) The semi-Poisson P (S) level spac-
ing distribution which shows Wigner-like repulsion ∼ Sβ

at small spacings S � 1 and is exponential, Poisson-
like, ∼ exp(−(β + 1)S) at large spacings S � 1, overall
described by the scale-invariant normalized semi-Poisson
curve

P (S) = ASβ exp(−(β + 1)S), (1)

with the constant values A = 4, 27/2 and 3125/24 ob-
tained from normalization, respectively. The spacing dis-
tribution P (S) is obtained by applying a “level-unfolding”
procedure which keeps the level-density constant and cor-
responds to 〈S〉 = 1. (ii) The sub-Poisson number vari-
ance, which defines the level number fluctuations in an
energy window E, with the mean number proportional to
E after “unfolding”, according to this scenario is

Σ2(E) ≈ χ0 + χE, (2)

defining the level compressibility χ. The value of χ ranges
between 0 (chaos) and 1 (integrability) and was related to
the multifractality of the critical wavefunctions [16].

The considered disordered system displays a transition
in 2D with energy levels which obey Wigner statistics for
the metal (with β = 4) and Poisson statistics for the insu-
lator (see Fig. 1). At criticality, where one expects “crit-
ical quantum chaos” to apply, numerical work suggested
level-repulsion in 3D for small S [4,5], also later shown in
2D [6]. In order to study carefully the level fluctuations
in the critical region it is important to identify the crucial
role of BC [10]. We find that for the three considered kinds
of BC the critical distribution function shows level repul-
sion at small spacings and is Poisson-like at large spacings.
However, when considering an averaged distribution over:
1) Dirichlet BC in both directions and 2) periodic BC
in one direction and Dirichlet in the other, the obtained
distribution is seen to be remarkably close to the scale-
invariant semi-Poisson curve of equation (1) appropriate
for β = 4 (see Fig. 3).

The theoretical framework to study the Anderson tran-
sition can classify disordered systems into three univer-
sality classes, depending on whether the Hamiltonian
preserves the time-reversal invariance or the rotational
invariance, in direct analogy with the random matrix the-
ory description of quantum chaotic systems [7,8]. Zero
spin-orbit corresponds to the orthogonal universality class
(β = 1) and finite spin-orbit to the symplectic class (β =
4), since in the last case there is time reversal symmetry
but no rotational symmetry and the spin is half integer.
In our calculations we consider a two-dimensional disor-
dered system, with spin-orbit coupling for spin-1

2 particles,
described by the Hamiltonian [6]

H =
∑
i,σ

εic
+
i,σci,σ +

∑
(i,j)

∑
(σ,σ′)

Vi,j;σ,σ′ c
+
i,σcj,σ′ , (3)

where i labels the L2 square lattice sites and σ = ±1/2 is
the spin index on each site. The second sum is taken over
all nearest neighbor lattice pairs (i, j) and the random
on site potential εi is a spin independent uniformly dis-
tributed random variable, chosen from a probability dis-
tribution of width W . In this case the nearest neighbor
hoppings Vi,j are random 2 × 2 matrices describing spin
rotation, due to spin-orbit, on every lattice bond (i, j). In
the spinor space they are represented by

Vi,j =

(
1 + iµV z µV y + iµV x

−µV y + iµV x 1− iµV z

)
ij

, (4)
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Fig. 2. This figure shows the variation of the critical P (S) for
three choices of BC for a system of linear size L. The mean
distribution over the three cases is shown by the continuous
black line. The Wigner distribution (dotted line) is also shown.

where µ denotes the spin-orbit coupling and the V x, V y
and V z, defined for every bond (i, j), are real and indepen-
dent random variables chosen from a uniform probability
distribution on the interval [− 1

2 ,+
1
2 ]. For the rest the spin-

orbit strength is fixed to µ = 2 and the disorder is chosen
to lie exactly at the critical point Wc = 8.55 [6].

We compute the eigenvalues from equation (3) by diag-
onalizing numerically the corresponding Hamiltonian ma-
trices for large square lattices. The statistical analysis of
energy levels must be done on a constant density of states
using an “unfolding procedure”. In order to achieve the
level unfolding for the considered disordered system it
is sufficient to obtain the average of the integrated den-
sity of states N , locally at E, by repeating many times
the disorder configuration creating a statistical ensemble.
Then the “raw” spacings ∆i = Ei − Ei−1 are replaced
by the ‘unfolded’ new ones Si = Nav(Ei) − Nav(Ei−1) ≈
(Ei−Ei−1)∂Nav(E)

∂E = (Ei−Ei−1)/∆, where ∆ is the local
mean spacing around Ei or equivalently the inverse den-
sity of states obtained from the raw data. In the numerical
calculations we considered eigenvalues within the energy
window [−2, 2] performing 2700, 1200, 675 and 794 ran-
dom configuration runs in each case, with L = 20, 30, 40
and 60, respectively. The total number of eigenvalues from
all random configurations for each BC is about 400 000 for
L = 20, 30, 40 and 1 000 000 for L = 60. These “raw” data
were “unfolded” in the described way.

The obtained P (S) at criticality is shown in Figure 2
for the three different BC choices (11), (10) and (00),
where 1 means periodic and 0 means Dirichlet BC in a
given direction. The computed curves are, clearly, very
different, in agreement with the corresponding 3D re-
sults for β = 1 [10]. They are very different from the
Wigner or Poisson curves while their average, over the
three BC, cannot fit to the semi-Poisson, either. However,
the average over Dirichlet (hard wall) in both directions
(00) and periodic in one direction with Dirichlet in the
other (10), which is displayed in Figure 3 for various sys-
tem sizes, gives a distribution very well-described by the
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Fig. 3. The mean P (S) distribution of the (10) and (00)
combinations of BC for several system sizes L is shown
to follow closely the semi-Poisson distribution P (S) =
(3125/24)S4 exp(−5S) (Eq. (1) for β = 4) (black line). The
Wigner (dotted line) and the Poisson (dashed line) are also
plotted.
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Fig. 4. The number variance Σ2(E) vs. the energy window E
for the two BC (00) and (10). The straight lines fit the data
giving slopes corresponding to non-asymptotic χ values. The
Wigner (dotted line) and the Poisson (dashed line) are also
displayed for comparison.

semi-Poisson curve of equation (1) for β = 4. This is the
most important result of the paper and shows the validity
of the semi-Poisson for the chosen specific average over BC
at criticality. The obtained semi-Poisson is also in agree-
ment with recent results for the critical P (S) at the metal-
insulator transition in 3D disordered systems, where the
semi-Poisson was obtained by averaging over all possible
combinations of BC [10].

The longer in the E-range critical spectral fluctua-
tions are described by a linear number variance Σ2(E) ≈
χ0 +χE, with the compressibility χ related to the critical
wavefunction dimensionDψ

2 and the space dimension d via
χ = (1/2)(1−Dψ

2 /d) [16]. In the considered model previ-
ous studies gave Dψ

2 ≈ 1.63 [6]. For a rather small energy
window E (see Fig. 4) the level number variance is shown
to be linear with level compressibility χ which varies with
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Fig. 5. Σ2(E)/E versus E for a much broader range of E
where the independence on BC is seen. The asymptotic value
approximates χ ≈ 0.07.

the chosen BC. However, when the energy window E in-
creases the result becomes independent of BC, as was al-
ready shown in 3D [10]. The obtained asymptotic level
compressibility in this case becomes Σ2(E)/E → χ ≈ 0.07
which leads to a Dψ

2 = 1.72, rather close to the expected
value according to the previous formula (see Fig. 5). The
obtained value of χ in 2D should be contrasted with the
higher 3D asymptotic value χ ≈ 0.27 [10].

The main result from our calculations, done on a
square random lattice and not on a peculiarly shaped non-
random billiard, is the validity of the semi-Poisson statis-
tics at the metal-insulator transition in 2D disordered sys-
tems with spin-orbit coupling. However, the semi-Poisson
P (S) is obtained for the averaged distribution over two
specific BC. It must be pointed out that only the main
part of the distribution agrees surprisingly well with the
analytical result. For large S, where the dependence on
BC should become less important, we have not succeeded
to describe its tails, possibly due to their exponentially
small nature. In this case the appropriate statistical mea-
sure becomes the number variance since longer range level
correlations are needed. We find a linear number vari-
ance Σ2(E) ∼ χE which becomes independent of the BC
choice. The obtained χ is close to the expected value from
the formula via Dψ

2 .
In conclusion, we have shown the validity of the semi-

Poisson level statistics at the critical point of the metal-
insulator transition with β = 4 in 2D. The semi-Poisson
curve is shown to describe very well the main part of the
computed distribution for a specific average over BC and
is similar to recent results for critical disordered systems
and weakly chaotic quantum systems. Our calculations,
on one hand, could justify the averaging over boundary

conditions recently shown to lead to the semi-Poisson
statistics at the mobility edge [10]. On the other hand,
suggest that such an average might be related to the
bandwidth distributions, by repeating periodically the
square, as it was recently shown for a non-random one-
dimensional critical quasi-periodic model [17]. According
to reference [18] the critical P (S) with periodic bound-
ary conditions is closer to the Poisson distribution in 4D
than in 3D. Thus it might seem improbable to obtain
the semi-Poisson by averaging over all BC for β = 1 in
four dimensions. Clearly, more work is needed to examine
the validity of the critical semi-Poisson distribution, also
for 3D disordered systems with spin-orbit coupling and
systems in the presence of a magnetic field (β = 2).
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